Electrically conducting probes with full tungsten cantilever and tip for scanning probe applications
نویسندگان
چکیده
We have developed a new hybrid AFM probe combining an SU-8 polymer body with a full tungsten cantilever having a nanometric tip. The fabrication is based on surface micromachining a silicon wafer, where tungsten is sputter deposited in oxidation sharpened moulds to yield sharp tips with radius below 20 nm. The material properties of tungsten were measured, yielding a hardness of 14 GPa, a specific resistivity of 14.8 μ cm and Young’s modulus of 380 GPa. Analyses of the probes show a mechanical quality factor of 90 in air, and a low contact resistance of 25 on a gold sample is measured. AFM imaging is demonstrated. As a step in the development of a robust electrically conducting AFM probe, the results are very promising. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
Multifunctional probe array for nano patterning and imaging.
This letter reports the design, fabrication, and testing of a multifunctional scanning probe array for nanoscale imaging and patterning. The probe array consists of multiple cantilever probes, with each probe being able to perform a dedicated function such as scanning probe lithography (e.g., dip pen nanolithography and scanning probe contact printing) or scanning probe microscopy (e.g., atomic...
متن کاملComputational models of a nano probe tip for static behaviors.
It is difficult to predict the measurement bias arising from the compliance of the atomic force microscope (AFM) probe. The issue becomes particularly important in this situation where nanometer uncertainties are sought for measurements with dimensional probes composed of flexible carbon nanotubes mounted on AFM cantilevers. We have developed a finite element model for simulating the mechanical...
متن کاملHigh spatial resolution Kelvin probe force microscopy with coaxial probes.
Kelvin probe force microscopy (KPFM) is a widely used technique to measure the local contact potential difference (CPD) between an AFM probe and the sample surface via the electrostatic force. The spatial resolution of KPFM is intrinsically limited by the long range of the electrostatic interaction, which includes contributions from the macroscopic cantilever and the conical tip. Here, we prese...
متن کاملDesign of a contact probe with high positioning accuracy for plasmonic lithography.
Plasmonic lithography with a contact probe records nano-meter scale features and has high-throughput owing to its capability to scan in contact mode. The probe is commonly based on a micrometer-scale cantilever, which leads to the tip-positioning problem due to force-deflection that induces lateral tip displacement. We propose a geometrically modified probe to achieve high positioning accuracy....
متن کاملTorsional Resonance Mode Imaging for High- Speed Atomic Force Microscopy
The instrumentation of high-speed imaging has been a challenge for scanning probe-based technologies. Mechanical stability of the system, surface tracking at sharp topographic transitions and prolonging tip lifetime have been the determining factors for practical applications. In this paper we report a new type of feedback control based on the torsional resonance amplitude (TRmode ) of cantilev...
متن کامل